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Outline

• Motivation and objectives

• Parameters of the forced coaxial jet

• Experimental facility

• Results

• Unforced cases

• Pressure node/antinode forcing

• Conclusions
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Motivation:  
Combustion Instability in Rocket Engines
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Objectives

Investigate acoustic receptivity 
characteristics of a model liquid rocket 
engine injector
• Dimensionless frequency
• Acoustic amplitude
• Momentum flux ratio
• Location within the mode

“Preferred mode” of the coaxial jet
• Definition of natural frequency of the flow
• Characteristic velocity scale
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The Coaxial Jet
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The Forced Coaxial Jet

1. Transverse Acoustic 
mode from 
chamber/siren
– f=f(c, geometry)

2. Acoustic modes 
propellant lines
– f~c/2L

3. Post wake
– St=ft/Uch

4. Shear layer instabilities
– St=f/Uch

5. Jet preferred modes
– St=fDij/Uij
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Forcing Characterization
• Shift pressure normalization from chamber pressure to injector dynamic pressure

• Normalize the frequency by the preferred mode of the coaxial jet

• Identify receptivity inception point—threshold for coupling between acoustics and flame
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Experimental Facility

Acoustic Source
Waveguide

Inner Chamber (Test Section)

Transverse Direction

Capabilities
– Cryogenic propellant temperature control with high accuracy (±1 K)
– Sub- and super-critical chamber pressure (pc up to 10.4 MPa)
– High amplitude acoustic forcing (pʹ/pc ~ 0.02)
– Coaxial injector with extended length for fully developed turbulent flow (le/D > 110)
– High-speed diagnostic tools

• Pressure transducer(s) natural frequency > 100 kHz
• Time-series backlit imaging ( f > 25 kHz)
• Off-axis windows for future PIV/PLIF measurements
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Experimental Conditions

•New injector
– D1 = 1.4 mm
– AR = 1.68
– t/D1 = 0.27

•J = 2 and 6
•N2 inner jet @ 120 K
•Gaseous He @ 275 K
•Re1 ~ 1.5x104

•Re2 ~ 1x104

•Fully-developed turbulent flow conditions
•Chamber pressure 2.8 MPa (400 psi) subcritical 

Liquid N2

Gas He

Ambient gas N2
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Unforced Cases

J = 2

J = 6
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Convection Velocity

Verify the accuracy of the Dimotakis (1986) expression for shear layer 
convection velocity for these flow conditions.  
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Preferred Mode Frequency
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Forced Cases

Representative cases for pressure node and pressure antinode

baseline Pressure antinode Pressure node
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Pressure Antinode Response J = 2
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Pressure Antinode Mechanism

J = 2

J = 6

unforced Max forcingPOD structure POD structure

Velocity Node
Outer jet mass 
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Pressure Node Mechanism

J = 2

J = 6

Pressure Node

Apparent excitation of 
antisymmetric mode in the 

outer jet that drives 
instabilities in the inner jet
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Receptivity
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Summary

• Convection velocity predicted using shear 
layer model

• Coaxial jet preferred mode scaling law
• Receptivity characteristics for J = 2 and 6

– Pressure antinode  outer jet puffing mechanism
– Scales with outer jet dynamic pressure
– Pressure node  excitation of helical or 

antisymmetric mode
– Very sensitive mode—driven by low level forcing
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Future Work

• Determine robustness of scaling laws
– Convection velocity (i.e. Dimotakis law)
– Strouhal number

• Supercritical conditions
• Reacting flow conditions
• Multiple injectors

DISTRIBUTION STATEMENT A.  Approved for public release; distribution unlimited.



21Place Proper DISTRIBUTION STATEMENT Here

Backup slides
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Unforced Coaxial Jets
•Frequency depends on location
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Convection Velocity

Convective Shear Layer Velocity by Dimotakis (1986)
Vortex Frame of Reference

• Bernoulli’s equation
− A stagnation point must exist between vortices. Therefore, along a line through this point, 

dynamic pressures are approximately equal.
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Convective Mode from POD

POMs 3 & 4 exhibit the same 
flow structure, shifted by 90°

in the direction of flow.

Proper orthogonal modes 
(POMs) 3 & 4 were found to 
be the most energetic 
conjugate pair.

The natural mode is 
represented by POMs 3 & 4.

The natural mode spans a 
band of frequencies rather 
than a single peak frequency.

• Proper Orthogonal Decomposition
• To identify traveling, coherent structures, a conjugate mode pair is identified as any two 

modes whose CPSD magnitude peaks near a phase of ±90°.12
POM 3 POM 4

Arienti, M. and Soteriou, 
M.C.(2009)
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